المحولات الكهربائية

0

تعريف المحول:

هو معدة ساكنة لا تحتوى على أي أجزاء متحركة تستخدم لنقل القدرة الكهربية من جهة إلى جهة أخري وذلك بتغيير قيم مكونات هذه القدرة (الجهد والتيار ) مع المحافظة على التردد.
وعادة يسمي الملف المتصل بمصدر الجهد بالملف الابتدائي كما يسمي الملف المتصل بالحمل بالملف الثانوي.

استخدامات المحولات:

1. تستخدم المحولات لنقل القدرة الكهربية لمسافات بعيدة من أماكن توليدها إلى أماكن توزيعها واستخدامها.
2. تستخدم المحولات مع أجهزة القياس والوقاية عندما تكون التيارات والجهود الكهربية عالية وذلك بخفض قيم التيارات أو الجهود إلى قيم صغيرة يمكن قياسها والتعامل معها.
3. تستخدم المحولات في العزل الكهربائي بغرض منع الشوشرة الكهرومغناطيسية في الدوائر الإلكترونية.
4. تستخدم المحولات في اغلب الأجهزة الكهربية والالكترونية للحصول على جهود تشغيل هذه الأجهزة والتي تعتبر صغيرة جدا بالمقارنة بجهد المصدر.
5. تستخدم المحولات أيضا للموائمة ( التوفيق ) بين الممانعات.

تركيب المحول:

يتركب المحول عموما من:
1- قلب حديدي مصنوع من رقائق من الألواح المصنوعة من الصلب السليكوني.
2- ملفين من الأسلاك الكهربية المعزولة احدهما هو الملف الابتدائي والآخر هو الملف الثانوي ويتم لفهما على جانبي القلب الحديدي.
أي انه يمكن اعتبار المحول مكون من دائرتين احداهما دائرة مغناطيسية والأخرى دائرة كهربية حيث يمثل القلب الحديدي الدائرة المغناطيسية و تمثل الملفات الدائرة الكهربية.



تصنيف المحولات من حيث نسبة التحويل:

1. محولات رفع Step-up
2. محولات خفض Step-down
ملحوظة:
أى محول يمكن ان يعمل كمحول خافض أو محول رافع أعتمادا على أتجاه الغذية و لا يوجد بين المحول الرافع او المحول الخافض أى اختلاف فى التركيب او التصميم.

* تصنيف المحولات من حيث الوظيفة الكهربية:
1- محولات قدرة ( Power Transformer ) وهى المحولات المستخدمة فى شبكات النقل الكهربية ومحطات التوليد الكهربية.
الشكل التالى يوضح صورة محول قدرة جهد 132/11 كيلو فولت

2-محولات نوزيع ( Distribution Transformer ) و هى المحولات المستخدمة فى شبكات التوزيع الكهربائية و تكون قدرة هذة المحولات أقل من MVA 5 .
3- محولات قياس و تنقسم إلى نوعين

  • محولات جهد Voltage Transformer .
  •  محولات التيار Current Transformer. 


 تركيب المحول Construction of Transformer 

يتركب المحول من ثلاثة أجزاء رئيسية هى:

  1.  الملف الأبتدائى Primary Winding 
  2.  الملف الثانوى Secondary Winding 
  3.  القلب الحديدى Core


العناصر الثلاثة الذكورة اعلاه هى اجزاء المحول الأساسية اما فى محولات الفدرة ( Power Transformer ) فيتم إضافة الأجزاء التالية

  • خزان الزيت الرئيسى Main Tank
  • خزان التمدد Conservator 
  • ريديتر ( مجموعة مواسير للتبريد الزيت ) Radiator 
  • طلمبة ضخ الزيت Oil pump 
  • مجموعة مراوح التبريد Cooling Fan
  • منظم الجهد Tap Changer 
  • عازل أختراق الجهد العالى HV Pushing 
  • عازل أختراق الجهد المنخفض LV Pushing





حدوث الضوضاء فى المحولات بيكون راجع الأجزاء الميكانيكية الغير مثبته بالأسلوب الصحيبح و احيانا من عدم التثبيت الجيد لرقائق القلب الحديدى و تزداد هذة الضوضاء كلما ازدات الحمل نتيجة لزيادة التيار الكهربى و بالتالى زيادة المجال المغناطيسى.
و المواصفات العالمية IEC تحدد قيمة هذة الضوضاء بوحدة قياس الديسبل طبقا لحجم المحول و جهد التشغيل و قدرة المحول و هذة موضوعة فى جداول طبقا لمواصفات المحول و اذا زادت هذة القيم عن القيم المحددة فهذا معناه وجود خلل بالمحول.
بالنسبة للتردد اذا قل يزداد الفيض المغناطيسى و التالى من الممكن ان يكون له تاثير على زيادة نسبة الضوضاء


يتم حساب المفاقيد الحديدية فى المحول و بتحليل هذة المعادلة و معرفة المتغرات التى تتحكم فيها نعرف كيف بتم تقليل المفاقيد فى محولات القدرة
Pe= K * t^2 * B^2 *F^2/Ro W/Kg
حيث
Pe قية المفاقيد الحديدية بالوات لكل كيلو جرام من وزن القلب الحديد
K رقم ثابت يعتمد على نوع سبيكة الحديد المصنوع منها القلب الحديدى
t سمك شرائح الحديد المصنوع منها القلب
F تردد التيار الكهربى
Ro قيمة المقاومة النوعية للقلب الحديدى
B كثافة الفيض المغناطيسى

و من المعادلة السابقة نجد ان قيمة المفاقيد تتناسب طرديا مع مربع التردد و مربع الفيض المغناطيسى و مربع سمك الشرائح المصنوع منها القلب الحديدى و تتناسب عكسى مع المقاومة النوعية لمادة القلب
و مما سبق يمكن تقليل المفاقيد الحديد و التيارات الدوامية عن طريق

  •  تقليل كثافة الفيض المغناطيسى 
  •  استخدام سبيكة من الحديد لها مقاومة نوعية عالية
  •  استخدام شرائح ذات سمك صغير


يصنع القلب الحديدى من شرائح الحديد السلكونى لتقليل التيارات الدوامية و تقليل المفاقيد